
J .  FZluid Mech. (1971), wol. 47, part 3, p p .  609-623 

Printed in Cheat Britain 
609 

The breakdown of electrical insulation in a plane layer 
of insulating fluid by electrocapillary instability 

By D. H. MICHAEL, M. E. O’NEILL 
Department of Mathematics, University College London, Gower Street, W.C. 1 

AND J. C. ZUERCHER 
Department of Electrical Engineering, Massachusetts Institute of Technology, 

Cambridge, Mass. 

(Received 28 July 1970) 

A theoretical and experimental study is made of the failure of electrical insulation 
in a layer of dielectric fluid filling a circular hole in a horizontal solid dielectric 
sheet. A potential difference is applied between conducting fluids which bound 
the fluid and solid dielectric layer above and below. It is observed that a critical 
potential difference is reached at  which the fluid dielectric becomes statically 
unstable under the action of surface tension and normal electrical stresses a t  
its interfaces. When this potential is reached the dielectric fluid insulation fails. 

The critical potential difference is calculated by both an approximate and an 
exact theory. The approximate theory ignores the changes in the electrostatic 
field within the solid dielectric by allowing a charge distribution at  the curved 
surface of the hole. Comparison with the results of an exact theory shows that 
such an approximation introduces only small errors in the calculated points of 
transition to instability. 

It is shown that failure may take the form of a symmetric (sausage) mode of dis- 
placement, or an antisymmetric (kink) mode, depending on whether the radius of 
the hole is greater or less than approximately the depth of the layer respectively. 
The two forms of failure were indicated in the experiments, and the observed 
critical voltages are in good agreement with those predicted by the theory. 

1. Introduction 
In  a recent paper Michael & O’Neill (1970) have given a discussion of plane 

waves on a horizontal layer of insulating fluid of infinite extent horizontally, 
and bounded vertically by semi-infinite conducting fluids which are a t  different 
electrostatic potentials. The problem, as discussed in that paper, was suggested 
by the work of Jayaratne & Mason (1964) on the effect of electric fields on the 
coalescence of water droplets with a water surface. It was shown that the marginal 
state between stable and unstable waves is a static one in which electrical and 
surface tensions are in balance at  the interfaces. 

Interfacial instability can be the cause of the failure of electrical insulation of 
anon-conducting fluid which is in contact with a fluid electrode. This phenomenon 
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has been demonstrated in the experimental work of Taylor & McEwan (1965) 
where, in fluid conductorlfluid insulator systems such as waterlair and waterloil, 
instability precedes the electrical breakdown of the dielectric fluid. In this event 
jets of the conducting fluid formed by the growth of unstable disturbances 
precipitate the failure of the insulation. In  a system such as mercurylair, how- 
ever, electrical breakdown of the dielectric occurs at  a potential difference lower 
than that for which interfacial instability arises. 

Another form of instability has been demonstrated in an experimental and 
theoretical study by Atten & Moreau (1970), who have shown that when a non- 
conducting polar fluid is bounded by parallel plane solid electrodes, the dielectric 
fluid can become unstable through the injection of charge carriers. Such an 
instability leads to a cellular convection flow regime in the fluid. 

In this paper we describe an experimental study which has recently been carried 
out by one of us (J. C. Zuercher) into the failure of insulation of a horizontal layer 
of insulating fluid bounded horizontally by a circular non-conducting wall. A 
potential difference is established between the upper and lower horizontal inter- 
faces which are adjacent to fluid electrodes. The potential difference is raised 
until interfacial instability occurs, resulting in the failure of the fluid insulation. 
The paper also gives a mathematical analysis of the marginal state of incipient 
instability, using a model whose geometry matches that of Zuercher’s experi- 
ments. It is shown theoretically, and indicated in the experiments, that the 
instability of the dielectric fluid may take different forms, depending on whether 
the radius of the wall is greater or less than approximately the depth of the 
layer. We have also determined theoretically the critical potential difference 
across the dielectric at  which breakdown occura, over a wide range of values of the 
ratio of wall radius to depth. The breakdown voltages obtained experimentally 
are compared with the theoretical values. 

2. Preliminary discussion 
The geometry of the experiments conducted by Zuercher is illustrated in 

figure 1 .  Conducting fluid occupies the space IzI > h, and the space 1x1 < h is filled 
with a layer of solid insulating material in which there is a circular hole con- 
taining a fluid insulator with the same density as the conducting fluid. The 
potential of the upper conductor is raised above that of the lower until break- 
down of the fluid insulation occurs. The conditions of this experiment are closely 
related to those examined in Michael & O’Neill (1970), but the connexion re- 
quires further elucidation because the previous discussion analyses waves on an 
unbounded layer, whereas in this experiment the layer is bounded horizontally 
by the solid insulator. 

The main results of the theory given previously are that the critical electro- 
static fields at  which plane waves of wave-number li: become unstable, on an 
insulating layer of fluid of height 2h, are given by 

or 

K~ E: = 4nkT tanh kh, 

K~ EZ = 4nkT coth Eh, 
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in Gaussian units. Here Bodenotes the applied electric field, Tthe surface tension 
and the dielectric fluid is assumed to have a dielectric constant K ~ .  Equations, 
(2.1) and (2.2) apply to the symmetric ‘sausage’ modes, and the antisymmetric 
‘kink’ modes respectively. Clearly for given k the lowest value of E, at which 
this instability occws will be that for a sausage mode. On an infinite layer of 
fluid all values of k are possible, but when the layer is bounded, the horizontal 
boundary conditions give rise to a discrete set of possible values of k. 

Conducting fluid 

Conducting fluid 

FIGURE 1. Schematic diagram of experiments. 

In order to obtain results appropriate to the geometry of figure 1 it is desirable 
to write solutions in cylindrical polar co-ordinates ( r ,  8, x ) ,  where z is the vertical, 
and (r ,  0) polar co-ordinates from the centre of the circle in the horizontal plane. 
Let the upper and lower surfaces of the plane layer be x = h, and the radius of 
the cavity r = R. 

Let -E,5 be the applied electric field, and x a disturbance electrostatic 
potential when the insulating layer is slightly displaced. The conditions on x 
are that V2x = 0 and, at  the top and bottom interfaces in contact with the con- 
ducting fluid, the potentials are unchanged. Thus if cl, c2 represent the vertical 
displacements of the interfaces above and below respectively, in linearized 
theory x satisfies the condition x + E, = 0 a t  z = h, and x + E, Q = 0 at z = - h. 
It is significant that if < is not zero at the edge of the surface interfaces a t  r = R, 
then x will be discontinuous at  these points. To avoid this singularity it is 
necessary that cl = c2 = 0 a t  r = R. 

A suitable solution of V2x = 0 for 1x1 < A and 0 < r < R is 

in which m is an integer, and the summation is taken over the values of a,, for 
which J,(a,,R) = 0. The form of 6 consonant with (2.3) is 

00 

[ = ern$ Jm(am4r) eime. 
i=l 

(2-4) 
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If we use the sinhamiz form we have the surface condition 

EoCl = - ~ ~ ~ s i n h a , , h e i ^ ~  Jm(amp), 

and C1 = - C2 at corresponding points. Such a form of displacement will represent 
a transition of the sausage mode type. When x depends on cosh a2aiz the transi- 
tion is such that Cl = <,, that is a kink mode. We may directly recover (2.1) and 
(2.2) so far as these equations are relevant, by applying the condition of con- 
tinuity of stress at  the interface, which is that, at each interface, the variation in 
surface tension is matched by the variation in electrical stress. 

A solution of this form is not a mathematically exact solution to the problem, 
but it is instructive to examine in the first place its implications for the critical 
values of E, for breakdown by instability. Subsequently we compare these 
results with an exact solution of the problem. 

It is clear that whichever unstable mode occurs the critical value of E, is to be 
determined by the lowest values of k = ami which can occur. These are given by 
the solutions of the equation Jm(kR) = 0. For m = 0, 1,2, we have 

( 2 . 5 )  I m = 0: ao2 R = 5.520, 

m = 1: allR = 3.832, al,R = 7-016, 

m = 2: aZ1R = 5-135, a,,R = 8.417. 

aO1 R = 2.405, 

However, the displacements of the interfaces must be such that the volume 
of insulating fluid is kept constant, assuming it to be incompressible. This con- 
dition introduces a constraint on the components of 5 associated with m = 0, for 
the sausage mode only. In particular if the part of 5 associated with m = 0 is 

written as m 

Co = X Coi JO(aoir), 
i = l  

then Coi 
i-lao, 

rC,dr = - - RJ1(aoiR) = 0, 

the summation being taken over all the values of aoi for which J,(aOi R)  = 0. 
So far as a statical representation of the surface is concerned this does not 

introduce any constraint on the individual components. But it can be seen that 
the lowest possible value of E, at which any mode can become unstable is that 
associated with the m = 0 sausage mode for which i = 1. It might therefore be 
expected that such a mode would grow in time without proportional growth in 
the other modes associated with m = 0. This would clearly be precluded from 
continuity considerations, since this mode provides individually a contribution 
to the change in volume. This reasoning may clearly be generalized to yield the 
conclusion that sausage mode instability will not arise in any of the modes 
associated with m = 0, axisymmetric disturbances, since each such mode con- 
tributes to the change in volume. Such restrictions do not apply to the m = 0 kink 
modes, or to the modes of either type when m $: 0. Figure 2 shows the form of 
the surface displacements for the m = 0, and m = 1 sausage and kink modes. 
From the preceding discussion instability can occur in the forms of figure 2 ( b ) ,  ( c )  
and (d )  but not in figure 2 (a).  Thus for the lowest breakdown voltages, we shall 
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expect the m = 1 sausage mode and the rn = 0 kink mode to be significant. 
Substituting the values of am( given by (2.5) in (2.1) and (2.2) we find 

and 

Egh h h 
ys = K l -  = 3.832-tanh3.832- 

4lTT R R’ 

Eih h h 
4rrT R R’ yk = K ,  __ = 2.405 - ~ 0 t h  2.406 - 

(4 
FIGURE 2. (a) m = 0, sausage mode; (b )  rn = 1, sausage mode; 

(c) m = 0, kink mode; (d) m = 1, kink mode. 

for the lowest value of E, in the sausage and kink modes respectively. These ex- 
pressions as functions of (h/R) are plotted in figure 3. It is seen from figure 3 that 
when h/R < 0.367 breakdown by instability should occur by a sausage mode with 
m = 1 and for h/R > 0-367 by a kink mode with m = 0. 

The shortcomings of this form of analysis of the problem become evident when 
we examine the conditions on the fluid solid interface a t  r = R. Evidently from 
(2.4) x = 0 at r = R, and since x = 0 for z = k h and r > R, the solution for the 
potential inside the solid insulator is x = 0 everywhere. This means that there is 
a discontinuity in the displacement vector, indicating the presence of charge at  

39-3 
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the interface r = R. The behaviour of the insulating fluid observed in the ex- 
perimental study, described in § 4, suggests that breakdown does not occur by 
charge passing along the walls of the circular hole. Thus it is necessary to modify 
the theory to allow for the continuity of the displacement vector at  r = R. In 
the following section we give this form of solution. 

6 

5 

4 

Y 3  

2 

1 

0 0.5 1.0 

hlR 
1.5 

FIGURE 3. The functions ys and yh, defined by equations (2.6) and (2.7). 

3. Exact mathematical theory 
From the foregoing discussion it is clearly necessary to determine the perturba- 

tion electrostatic potential within the insulators in a way which allows the field 
in the region 0 < r < R to be coupled with that in the region r > R to ensure zero 
charge on the liquid-solid interface. 

Let x1 and xz denote the perturbation electrostatic potentials in the liquid 
and solid insulators respectively. To allow for different dielectric constants in 
the solid and fluid insulators we now write 

XI = x + x L  xz = Z+X& (3.1) 
where V2xT = 0 for 0 < r c R, IzI < h and V2xz = 0 for r > R, IzI < h. The 
function 2 we choose so as to be continuous and differentiable at r = R, 121 < h 
and to satisfy V2x = 0 for all values of r and IzI < h together with the boundary 
conditions 

X bounded a t  r = 0, 

X + O  as r+m, 
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for the antisymmetric kink mode disturbance. For the sausage mode the con- 
dition (3.2) is changed to 

z(r ,  & h) = S EoCl (0 < r < R). (3.6) 

It is clear that x would represent the complete perturbation potential if the 
fluid and solid dielectrics have the same electrical properties. Using Hankel 
transform theory, it follows that the solution for a kink mode is 

u .R 
where Fm(amj, k) = Jm(umjr) Jm(kr)rdr = Jm(lcR)Jm-,(am,R). (3.8) 

In  the case of a sausage mode, the corresponding expression for 2 is given by 
(3.7) with hyperbolic sines replacing hyperbolic cosines. The functions xf and 
x: for either a kink or sausage mode must satisfy the boundary conditions 

so" k2 - ~ k j  

x,*(r, k h )  = 0, (0 < r < R),  (3.9) 

xz*(r, &h) = 0, ( r  > R), (3.10) 

X? = xZ*, ( r  = R, 1x1 < h), (3.11) 

(3.12) 

xf boundedat r = 0, x g + O  as r - t c o ,  (3.13) 

where K~ and K~ denote the dielectric constants of the liquid and solid insulators 
respectively. For a kink mode, the solutions for and xz can be shown to be: 

m m r n  

with 
m 

Pmnj = so kz (k2+ ,u~ /h2) -1Fm(~mj ,  k) Jin(kR) dk (3.18) 

and Amn = ~2Im(~nR/h)  KkbnRIh) -~l '&.(~nR/h)  Km(PnRlh). (3.19) 

I n  the case of a sausage mode, equations (3.14) t o  (3.19) again hold, except that 
the dependence on z is sin (,unz/h) and ,un now denotes nr. 

The critical electric field at  which failure of the fluid insulation occurs by 
instability is determined from the normal stress condition at  the interfaces 
between the conducting and dielectric fluids. It was shown in Michael & O'Neill 
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(1970) that for the unbounded fluid model the critical state is reached when the 
electrical and surface tension stresses a t  each interface just balance and this 
condition will not be altered by the presence of a rigid boundary r = R to the 
dielectric fluid. Accordingly electrical breakdown by fluid instability will occur 
when 

( 3 . 2 0 )  

where the + or - sign applies according as z = + h or z = - h. Now 

and for each m the functions Jm(amp), (i = 1 , 2 , 3 ,  ...) form a complete orthogonal 
set over the range 0 < r < R.  Thus within this range we may write 

(3 .22)  

( 3 . 2 3 )  

By use of the equations ( 3 . 2 1 )  to ( 3 . 2 3 )  it follows that within the range 0 < r < R,  
the derivatives of X and x;” with respect to z on x = -C h maybe written in the form 

( 3 . 2 4 )  

( 3 . 2 5 )  

where the - or + sign is taken according as z = + h  or z = -h. Because of the 
forms of the representations for 6 and x1 it is clear that the terms on each side of 
( 3 . 2 0 )  which involve m > 0 vanish when r = 0,  and since the expressions in ( 3 . 2 2 )  
and (3 .23)  are valid when r = 0 for m = 0, the conditions ( 3 . 2 0 )  will hold for 
0 < r < R provided that for each m 

m 

4?7K1Taki{m:,i = Eg C (Wmgj + g m i j )  g m j .  ( 3 . 2 6 )  

If we now write h = 2 n T / ~ , E g h ,  x = kh, a = R/h, Ymi = amiJm-l(anLiR) cmi, and 
tmi = amiR, equation ( 3 . 2 6 )  reduces to 

j=1 

where for a kink mode, 

( 3 . 2 8 )  
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with AnLn as in (3.19). For a sausage mode Cmii is given by (3.28) with tanh re- 
placed by coth and Dmij is given by (3.29) with pn now denoting nn-. 

It therefore follows that for given values of T, K ~ ,  K ~ ,  h and a, the minimum 
value of E, which produces instability in the dielectric fluid will be that value 
of E, corresponding to the maximum of the set of all eigenvalues of the set of 
matrices C,, + D,, corresponding to  m = 0, 1,2,  . . . . 

I n  the case when the dielectric constants of both the fluid and solid dielectrics 
are the same Dmii = 0,  and as Cnlij is a real symmetric matrix for each rn, all the 
values of h satisfying (3.27) will be real. 

Numerical evaluation of the eigenvalues of the matrix (Cmti) has been carried 
out over a range of values of a from 0.1 to 8.0 for both kink and sausage modes 
when m = 1 , 2  and for the kink mode when m = 0 also. It can be seen that the 
integrand of Cmii is never negative when i = j and so all diagonal elements are 
positive. However, when i $; j the integrand is negative for tmg < ax < Emi (i < j) 
and this has the effect of making all off-diagonal elements of (Cmii) negative and 
much smaller in absolute magnitude than the diagonal elements. The numerical 
evaluations of Cmii have further shown that the elements of (C,,,) decrease 
monotonically in absolute magnitude as i or j increases. I n  deciding a suitable 
choice of upper limit X of integration for the calculation of the elements of 
(Cmij) we considered that with X = 200 each Cmi, could be determined to an 
accuracy of four decimal places since X? is an upper bound to the magnitude 
of the error in C,, when the upper limit of integration is X provided that &,Ja 
and trnj/a are each no larger than about 0.7X. The eigenvalues were evaluated by 
a successive approximation procedure in which the elements of the matrix and 
its eigenvalues were computed for 1 < (i,j) < N with N first taking the value 2 
and the procedure repeated with N increased by 1. When for a given value of a, 
the maximum eigenvalue Amax evaluated on two successive iterations agreed to 
a t  least three decimal places, it was assumed that this was the correct value of 
A,,, to three decimal places. We found that for the range of values of a considered, 
the convergence of the iteration procedure was very rapid and to obtain Amax 

to the desired accuracy it was never necessary for N to exceed 5. Figure 4 shows 
the graphs of A,, for kink mode disturbances when m = 0 ,1 ,2  and for sausage 
modes when m = 1,2.  It was pointed out in 5 2 that the m = 0 sausage mode is 
physically impossible. 

Our numerical investigations thus suggest that for a given depth h of dielectric 
fluid, failure of the fluid insulation is associated with the instability of the m = 0 
kink mode for holes with radii less than about 2-4h but for larger hole sizes it is 
the n = 1 sausage mode which first becomes unstable as the potential difference 
between the conducting fluids is increased. These deductions are similar to those 
we conjectured in 5 2,  and in table 1, we display values of Am,, for both the m = 0 
kink mode and the m = 1 sausage mode which have been computed using the 
theory set out in this section where continuity of both the tangential component 
of the electric field and the normal component of the displacement vector a t  the 
interface between the fluid and solid dielectrics is taken into account. For com- 
parison we also display values of A*, corresponding to Amax, if the condition of 
continuity of the normal component of displacement vector at  r = R is relaxed 
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and the modified unbounded layers theory described in $ 2  is applied. The ex- 
pressions for A* may be deduced from equations (2.1) and (2.2) and are given by 

A* = 2nT/Eg ~~h = ( ~ / 2 & , ~ )  tanh (&/a) 

for the m = 0 kink mode and 

A* = 2nT/Ei Klh = (u/2Ell) coth (tll/a) 

for the m = 1 sausage mode. 

1.2 

1.0 

0.8 

8 
0.6 
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0 I 2 3 4 5 6 

a 

FIGURE 4. Value of Am= for kink modes when m = 0, 1, 2 and 
sausage modes when m = 1, 2 against a = R/h. 

a = R/h 

0.10 
0.125 
0.25 
0.5 
1.0 
2.0 
4.0 
6.0 
8.0 

Kink mode m = 0 

L . a x  A* 
0.018 0.021 
0.023 0.026 
0.045 0.052 
0.090 0- 104 
0.173 0.205 
0.295 0.347 
0.408 0.447 
0.450 0.475 
0.469 0.485 

TABLE 1 

Sausage mode m = 1 
c--h----\ 

A* 
0.012 0.013 
0.015 0.016 
0.030 0.033 
0.06 1 0.065 
0.122 0.131 
0.262 0.273 
0.694 0.702 
1.382 1.388 
2.339 2.343 
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It is seen from table 1 that the critical values of h obtained in the exact theory 
are well approximated by the original theory, especially for the very small 
and very large values of a. When a 9 1, i.e. R h, it might be expected that the 
two analyses would agree, since the boundary of the hole is at a large distance 
from the central part of it  on the length scale h of the wavelength of the wave 
motion. As a measure of the discrepancy arising in the approximate theory we 
may take the level of surface charge density CT residing at  r = R in that theory. 
For the kink mode, described by (2.4) we have 

cosharniz . 
x = - E  c .  came Jrn(am;r), 

rnzcosharnih 
where Jrn(a,l,iR) = 0. 

(3.30) 

where Z = x/h - 1. For modes with the lowest breakdown voltages Ern; - 1, and 
g +  0 like l / a  as a-too. We might conclude from this that the error in x is 
O(l /a )  at large a, and the error in A* is of the same order. The numerical results 
in table 1 are consistent with this. However, the error for both modes is appre- 
ciably less than l / a  in proportion. It is also noticeable from the table that the 
value of A* for the m = 1 sausage mode is a closer approximation to A,,, than 
for the m = 0 kink mode. This is perhaps because the total charge on the wall 
in all cases other than the m = 0 kink mode, is in total zero. 

Equations (3.30) and (3.31) also show why the approximate theory gives good 
agreement when a is small. In this case 

the error being exponentially small, except near the surfaces 2 = 5 1. It is clear 
also from (3.30) that in this case the variable part of the electric field is confined 
to surface layers of thickness R < h. 

The numerical calculations reported here appertain only to the case K~ = K ~ .  

In  the experimental study described in the following section K ~ / K ~  z 1.2. How- 
ever, the present calculations show that the coupling between the two dielectric 
media only marginally affects the conditions at  breakdown, so that a variation 
of KZ/K1 of this order would not be expected to give any substantial departures 
from the values of A,,, obtained here. 

4. A short experimental study 
A sketch of the apparatus is given in figure 5.  In order to remove any effects 

due t o  gravity, the insulating fluid was chosen to be a mixture of Dow Corning 
200 fluid (a low viscosity dimethylpolysiloxane) and CCl,, having a density 
equal to that of tap water. This fluid was injected, using an eye dropper, into 
a waxed circular hole drilled into a 2% in. plexiglass sheet forming part of a frame 
of like material which in turn rested in a large Pyrex dish filled with tap water. 
The water in the upper half of the frame was electrically isolated by the frame 
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walls from the water in the lower half of the frame and the rest of the container. 
The circular boundary of the hole was waxed to ensure that the insulating fluid 
would completely wet the wall, and so establish that there would be no surface 
displacement a t  the edge of the wall. This was verified especialIy in the case of 
the larger hole diameters, by noting the existence of a thin layer of insulating 
fluid (which was dyed red) at the boundary after instability had occurred. This 
would also indicate with some certainty that a breakdown due to free charge a t  
the waII was not invoIved. The upper and lower electrodes were connected through 
a 3 kV d.c. source in series with an ammeter. 

Eyedropper for injecting oil 
into waxed circular hole 

Lower electrode 
connexion 

I 

Lower eIectrode 
PIexiglass frame 

Insulating liquid 

PIexiglass frame 1 LLower eIectrode 

FIGURE 5 .  Schematic diagram of experimental apparatus. 

As an increasing voltage was applied, the instability was marked by both a 
surge of current and either a puncturing of the insulating fluid for the larger 
hole diameters employed, or a violent ejection of the insulating fluid from the 
hole for the smaller hole diameters. The two forms of failure are illustrated in 
figure 6. The first form of instability is consistent with the wave-form of figure 2 (b ) ,  
a non-axisymmetric sausage mode, while the second form of breakdown corre- 
sponds to a kink mode such as is illustrated in figure 2 (c). Figure 7 shows a plot 
of the experimental data, giving the critical potential difference V ,  in kV against 
l/d, where cl is the diameter of the hole in em. The solid curves are derived from 
the theoretical solution of $ 3  with K~ = K ~ ;  thus with T in dynes/cm and h in 
cm, the theoretical value for V ,  in kV is given by 

= 0 * 3 ( 8 d ' h / ~ ~ h m ~ x ) 4 .  
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The curves have been drawn to fit the experimental data by taking a value of 
T / K ~  = 10.0. In some experiments, the insulating fluid was reused and in general 
it was found that the critical voltage was rather lower for cases when the same 
fluid had been used before. This accords with the observations of Taylor & 

Liquid condition before instability 

Liquid condition after instability 

0 
Lower voltages Higher voItages 

FIGURE 6. Illustration of the two forms of fluid instability. 

McEwan (1965)) that prestressed oillwater interfaces showed a lower resistance 
to instability. 

There is reasonably good agreement between the theoretical curves and the 
experimental data; not only are the shapes of the curves, including the dis- 
continuity in slope resulting from the transition of modes, reflected in the 
distribution of experimental data points, but in addition the observed difference 
in character of the instability for the larger or smaller hole diameters is consistent 
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with the theoretically predicted types of instability. Any discrepancies between 
the theoretical and experimental values of V ,  are probably due to variations 
in the true thickness of the insulating fluid layer, which could be controlled only 
to within 20 yo, and also to variations in the degree of its wetting of the plexiglass 
boundary. 

A value of K~ for the insulating fluid was obtained experimentally by a 
capacity measurement using a General Radio bridge. The value obtained was 

3 

1 

0 1 2 3 4 5 6 

I /d  (cm-I) 

FIGURE 7. The abscissa measures the inverse hole diameter, and the ordinate the voltage 
a t  incipient instability for h = +Sin. The solid curves are theoretical plots, assuming 
T / K ~  = 10, for the exact mathematical solution. indicates a measurement made with 
new liquid, whereas x indicates reused liquid. 

K~ = 2.59 & 0.15. This corresponds quite well with an arithmetic weighting by 
volume of the values 2.236 for CCl, and 2.63 for the silicone oil, where the former 
is the book value for CCl,, quoted from the Handbook of Chemistry and Physics, 
and the latter is a value obtained in the laboratory at  M.I.T. The weighted value 
for the mixture based on these values is 2.57. 

If we assume the value K~ = 2.6 the theoretical curves given in figure 5 
represent a value of T = 26dynes/cm. On this basis the mean value of T over 
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34 experimental points, using new fluid, was 26-66 with standard deviation 4-53. 
This is in general agreement with the value 24 f 7 dyneslcm for T determined by 
an independent direct measurement which involved balancing surface tension 
and gravitational forces. 

The agreement obtained between theory and experiment confirms our view 
that the mechanism of collapse observed in these experiments was that of 
interfacial instability, and not the bulk dielectric breakdown mentioned in 
Taylor & McEwan (1965) nor unipolar injection instability discussed in Atten & 
Moreau (1970). A calculation based on current values given by Sazhin & Shuraev 
(1966) suggests that, in the notation of Atten & Moreau, the injection parameter 
C is at most and that M2R < lo6, thus confirming that these experiments 
were conducted in a region of stability, so far as unipolar convection is concerned. 

We note in conclusion that the form of collapse observed here is sensitive to 
the ratio of hole diameter to hole depth in a way which is consistent with the 
interfacial instability mechanism, and that such behaviour would not be ex- 
pected in either of the other two mechanisms. 
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